
Stanford Machine Learning - Week IV

Eric N Johnson

July 31, 2016

1 Neural Networks: Representation

If we have a nonlinear decision boundary sometimes we can use Logistic Regression - but will have a whole bunch of terms
that are high-order polynomial. Second-order polynomial terms will grow at approximately O(n2) where n denotes the
number of features. For cubic features, this is even worse at approximately O(n3).

Here is an example in Computer Vision. A digital car picture, for instance, is made up of a giant grid containing col-
ors and darkness values. When a computer looks at a second image, perhaps one that is a different color or is turned a
different directions, somehow the computer has to differentiate this image from something that is not a car. The processing
required to do this grows in magnitude very quickly. A 50× 50 image will end up with 3 million quadratic features that have
to be used for classification.

1.1 Neurons in the Brain

Here’s some background.

• Algorithms were written to try to mimic the brain.

• Neural Network algorithms were widely used in the 80s and 90s. But in the late 90s, they became less popular.

• There’s an idea called the “one learning algorithm” hypothesis. The idea is that even specialized parts of the brain use
the same basic learning algorithm. In other words, any sensor will work in any part of the brain.

• There has been a resurgence in the use of Neural Networking algorithms.

1.2 Model Representation I

From biology, neurons have specific structures to perform their tasks.

• Dendrites are the ‘input wires’

• The nucleus form the computational unit in a neuron

• Axons are the ‘output wires’

We will represent neurons as Logistic Units.

1



The nodes x1, x2, x3 represent the “input wires.” The output is hθ(x), where

hθ(x) =
1

1 + e−θ
T x
,

x = [x0 x1 x2 x3]T

θ = [θ0 θ1 θ2 θ3]T

Sometimes the parameter values θi are called weights.

Layer 1 is also called the ‘input layer.’ The last layer is called the ‘output layer.’ Any layers inside input / output layers are

called ‘hidden layers.’ We may also have additional nodes x0 or a
(2)
0 called ‘bias units.’

Notation:

• a
(j)
i : activation of unit i in layer j.

• Θ
(j)

: matrix of weights controlling function mapping from layer j to layer j + 1. These are the parameters or weights.

Here is an example:

The neural network above has the following computations occuring:

a
(2)
1 = g (Θ

(1)
10 x0 + Θ

(1)
11 x1 + Θ

(1)
12 x2 + Θ

(1)
13 x3)

a
(2)
2 = g (Θ

(1)
20 x0 + Θ

(1)
21 x1 + Θ

(1)
22 x2 + Θ

(1)
23 x3)

a
(2)
3 = g (Θ

(1)
30 x0 + Θ

(1)
31 x1 + Θ

(1)
32 x2 + Θ

(1)
33 x3)

hΘ(x) = a(3)1 = g (Θ
(2)
10 a

(2)
0 + Θ

(2)
11 a

(2)
1 + Θ

(2)
12 a

(2)
2 + Θ

(2)
13 a

(2)
3 )

We have three input units and three hidden units. So

Θ
(1)

∈ R3×4

In general, if a network has sj units in layer j, sj+1 units in layer j + 1, then Θ
(j)

will be of dimension sj+1 × (sj + 1).

1.3 Model Representation II

Here is a vectorized representation. We define

a
(2)
1 = g (Θ

(1)
10 x0 + Θ

(1)
11 x1 + Θ

(1)
12 x2 + Θ

(1)
13 x3)

= g (z(2)1 )

where the superscript denotes that we are referring to layer 2. Thus

a
(2)
1 = g (z2)

1 )

a
(2)
2 = g (z(2)2 )

a
(2)
3 = g (z(2)3 )

2



The z values are just a linear combination of the Θ matrices. We also define

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z
(2)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z
(2)
1

z
(2)
2

z
(2)
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R3

The calculation may be vectorized as follows:

z
(2)

= Θ
(1)
x

a
(2)

= g (z(2))

Recall that this function g is the sigmoid function calculated element-wise. We may add a bias unit x0 by defining a
(2)
0 = 1.

If we define

a
(1)

= x

we have a representation z
(2)

= Θ
(1)
a
(1)

that has the activations on the input layer. Then add a
(2)
0 to have a

(2)
∈ R4

.

z
(3)

= Θ
(2)
a
(2)

hΘ(x) = a(3) = g (z(3))

The process of calculating hΘ(x) is called forward propogation.

1.4 Neural Network Learning its own Features

Here is a neural network

represented by

hΘ(x) = g (Θ
(1)
10 a

(2)
0 + Θ

(1)
11 a

(2)
1 + Θ

(1)
12 a

(2)
2 + Θ

(1)
13 a

(2)
3 )

Layer two will have the following representation

z
(2)

= Θ
(1)
a
(1)

a
(2)

= g (z(2))

This means that the model learns its own features. The next two lectures will have a concrete example.

3



1.5 A Neural Network Example - Part I

Consider a simplified model that has nonlinear features

≈

The points are

(x1, x2) = (0, 0), (0, 1), (1, 0), (1, 1)

where (0, 0) and (1, 1) correspond to y = 1 and the points (0, 1) and (1, 0) correspond to y = 0. This is the same as

y = x1 XOR x2

To represent this as a neural network, we construct

x1, x2 ∈ {0, 1}
y = x1 AND x2

which includes the bias unit +1 and weights. This may be written as

hΘ(x) = g (−30 + 20x1 + 20x2)

where Θ
(1)
10 = −30, Θ

(1)
11 = +20, and Θ

(1)
12 = +20. This neural network will compute the following table:

x1 x2 hΘ(x)
0 0 g(−30) = (1 + e

30)−1
≈ 0

0 1 g(−30 + 20) = (1 + e
10)−1

≈ 0

1 0 g(−30 + 20) = (1 + e
10)−1

≈ 0

1 1 g(−30 + 20 + 20) = (1 + e
−10)−1

≈ 1

4



1.6 Another example

Consider

hΘ(x) = g(−10 + 20x1 + 20x2)

The hypothesis hΘ(x) produces the following table:

x1 x2 hΘ(x)
0 0 g(−10) = (1 + e

10)−1
≈ 0

0 1 g(−10 + 20) = (1 + e
−10)−1

≈ 1

1 0 g(−10 + 20) = (1 + e
−10)−1

≈ 1

1 1 g(−10 + 20 + 20) = (1 + e
−30)−1

≈ 1

which represents

x1 OR x2

5



1.7 A Neural Network Example - Part II

Here is a neural network to produce NOT x1.

x1 hΘ(x)
0 g(10) ≈ 1
1 g(−10) ≈ 0

Similarly, this neural network produces (NOT x1) AND (NOT x2) ∶

Here is x1 XNOR x2:

which produces this table:

x1 x2 a
(2)
1 a

(2)
2 hΘ(x)

0 0 0 1 1
0 1 0 0 0
1 0 0 0 0
1 1 1 0 1

6



1.8 Multiclass Classification with Neural Networks

We use the “One-Vs.-All’ method using Logistic classifiers. For example, if we have {pedestrian, car, motorcycle,truck}, we
want

hΘ(x) ≈
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
when ‘pedestrian,’ hΘ(x) ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
when ‘car,’ hΘ(x) ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
when ‘motorcycle,’etc.

7


